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1 Entropy Over Countable Alphabets and Features of Con-
ditional Entropy

1.1 Entropy of distributions over countable sets

Let’s adjust our definitions to allow for distributions over countable sets. Let X be a
random variable taking values in X , a finite or countably infinite set, and let (p(x), x ∈X )
be its probability distribution. Its entropy is

H(X) = H((p(x), x ∈X )) = −
∑
x

p(x) log p(x).

This is well-defined, even if X is countably infinite, because all the terms have the same
sign.

Remark 1.1. In general, to define
∑

x∈X a(x), where X is countably infinite, define
it to be (

∑
x∈X a+(x)) − (

∑
x∈X a−(x)), where a+(x) := max(a(x), 0) and a−(x) :=

max(−a(x), 0). This definition makes sense when at least one of
∑

x∈X a+(x),
∑

x∈X a−(x)
is finite.

To avoid subtracting infinities when dealing with entropies over countable sets, proceed
as follows: Given a pair of random variables X,Y taking values taking values in (finite or
countably infinite) X ,Y , respectively, for each y ∈ Y , define H(X | Y = y) to be the
entropy of the conditional distribution of X given Y = y:

H(X | Y = y) = −
∑
x∈X

p(x | y) log p(x | y).

We can alternatively express

H(X) = E
[
log

1

p(X)

]
, E

[
log

1

p(X | Y )
| Y = y

]
,

as before.
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Define the conditional entropy of X given Y to be
∑

y p(y)H(X | Y = y), denoted
H(X | Y ). So

H(X | Y ) = E
[
log

1

p(X | Y )

]
.

Now H(X,Y ) = H(Y )+H(X | Y ) becomes a theorem, called the chain rule for entropy.

Theorem 1.1 (Chain rule).

H(X,Y ) = H(Y ) + H(X | Y ).

Proof.

E[log
1

p(X,Y )
] = E

[
log

1

p(Y )

]
+ E

[
log

1

p(X | Y )

]
.

We define D(p || q) for (p(x), x ∈X ), (q(x), x ∈X ) as

D(p || q) =
∑
x

p(x) log
p(x)

q(x)

To see that this is well-defined, observe that

=
∑
x

q(x)
p(x)

q(x)
log

p(x)

q(x)
.

Then this is well-defined because the function u 7→ u log u defined on R+ is bounded below.
Then, we can define I(X;Y ) := D(p(x, y) || p(x)p(y)), and our previous definition for

mutual information becomes a theorem:

Theorem 1.2.
H(X) = I(X,Y ) + H(X | Y ).

Proof.

E
[
log

1

p(X)

]
= E

[
log

p(X,Y )

p(X)p(Y )

]
+ E

[
log

1

p(X | Y )

]
.

These “theorems” or (X,Y ) can be schematically visualized via a Venn diagram.
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1.2 Relationship between mutual information and independence

It is important to recognize that the condition for I(X;Y ) = 0 is p(x, y) = p(x)p(y) for all
x, y, i.e. X,Y are independent (denoted XqY ). Since I(X;Y ) = H(X)+H(Y )−H(X,Y )
(inclusion-exclusion),

X q Y ⇐⇒ H(X,Y ) = H(X) + H(Y ).

1.3 General form of the chain rule

If we apply the chain rule twice, we get

H(X1, X2, X3) = H(X1 | X2, X3) + H(X2, X3)

= H(X1 | X2, X3) + H(X2 | X3) + H(X3).

Similarly, using the notation Xn
1 to denote (X1, . . . , Xn), we get the general chain rule:

Theorem 1.3 (Chain rule, general form).

H(X1, . . . , Xn) = H(X1) + H(X2 | X1) + H(X3 | X1, X2) + · · ·+ H(Xn | Xn−1
1 ).

Example 1.1. Consider an urn1 with 3 balls, two white and 1 red. Pull out all 3 balls
in a random order. Let X1 be the color of the first ball, let X2 be the color of the second
ball, and let X3 be the color of the third ball. Then

H(X1) = H(X2) = H(X3) =
1

3
log 3 +

2

3
log

3

2
= log 3− 2

3
.

We can also calculate the conditional entropies:

H(X2 | X1) = P(X1 = red)H(X2 | X1 = red) + P(X1 = white)H(X2 | X1 = white)

=
2

3
log 2

=
2

3
.

On the other hand, H(X3 | X1, X2) = 0 because X3 is determined by X1, X2. So the chain
rule gives

H(X1, X2, X3) = H(X1) + H(X2 | X1) + H(X3 | X1, X2)

= log 3− 2

3
+

2

3
+ 0

= log 3.

1No one in the 21st century has ever seen an urn.
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1.4 Problems with intuiting mutual information

Here is the Venn diagram for (X1, X2, X3):

What does region 6 represent? This could be I(X;Y | Z), the conditional relative en-
tropy between the joint distribution (X,Y ), conditioned on Z and the product distribution
with the corresponding marginals, conditioned on Z. That is, region 6 is

H(X | Z)−H(X | Y,Z).

What does region 7 represent? This region is

I(X;Y )− I(X;Y | Z).

Here is a big problem, not for the math but for any hope of intuition: This can be negative.
In particular, this says that in the presence of Z, Y can tell you more about X than it
does alone.

Example 1.2. Let X q Y , with X ∈ {1,−1}, Y ∈ {1,−1}, P(X = 1) = 1/2, and
P(Y = 1) = 1/2. Let Z = XY so Z ∈ {1,−1} with P(Z = 1) = 1/2. Then Y q Z and
X q Z, but X,Y, Z are not mutually independent. Since X q Y , we have I(X;Y ) = 0.
However,

I(X;Y | Z) = P(Z = 1)I(X;Y | Z = 1) + P(Z = −1)I(X;Y | Z = −1)

= P(Z = 1)(H(X | Z = 1)−H(X | Y, Z = 1))

+ P(Z = −1)(H(X | Z = −1)−H(X | Y, Z = −1))

Since X q Z, H(X | Z = 1) = H(X | Z = −1) = H(X) = log 2 = 1. Also, H(X | Y, Z =
1) = 0 because X = Y when Z = 1 and H(X | Y,Z = 1) = 0 because X = −Y when
Z = −1. So

=
1

2
(1− 0) +

1

2
(1− 0)
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= 1.

This is strictly bigger than I(X;Y ).

Let’s define I(X;Y | Z) in a way that works for a countably infinite alphabet. We first
define, given p(x, y, z), ∑

z

p(z)D(p(x | z) || p(y | z)),

denoted D(p(x | z) || p(y | z) | p(z)) to be the conditional relative entropy of p(x, z) with
respect to p(y, z) given z. Then D(p(x, y | z) || p(x | z)p(y | z) | p(z)) would then be
I(X;Y | Z). That is,

I(X;Y | Z) :=
∑
z

p(z)
∑
x,y

p(x, y | z) log
p(x, y | z)

p(x | z)p(y | z)

= E
[
log

p(X,Y | Z)

p(X | Z)p(Y | Z)

]
= H(X | Z) + H(Y | Z)−H(X,Y | Z).

Then the chain rule gives

I(X;Y | Z) = H(X | Z)−H(X | Y,Z).

1.5 The chain rule for relative entropy

Theorem 1.4 (Chain rule for relative entropy).

D(p(x, y) || q(x, y)) = D(p(x) || q(x)) + D(p(y | x) || q(y | x) | p(x)).

Proof.

D(p(x, y) || q(x, y)) =
∑
x,y

p(x, y) log
p(x, y)

q(x, y)

= Ep

[
log

p(X,Y )

q(X,Y )

]
= Ep

[
log

p(X)

q(X)

]
+ Ep

[
log

p(Y | X)

q(Y | X)

]
= D(p(x) || q(x)) + D(p(y | x) || q(y | x) | p(x)).

Similarly, there is a chain rule for mutual information

Theorem 1.5 (Chain rule for mutual information).

I(X;Y1, . . . , Yn) = I(X;Y1) + I(X;Y2 | Y1) + · · ·+ I(X;Yn | Y n−1
1 ).
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